1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
//! A dummy implementation of a [`HardwareDataManager`] that pretends
//! that there is a static circle of sound sources around the listener
use crate::hardware_data_manager::*;
use crate::localizer::Point;
use rand::prelude::*;
use std::collections::VecDeque;
use std::f64::consts::PI;
use std::sync::{mpsc, Arc, Mutex};
use std::thread;
use std::time::Duration;
/// Manages a thread that produces updates as if there is a circle of sound
/// sources around the listener.
pub struct DummyHdm {
handle: Option<thread::JoinHandle<()>>,
tx: mpsc::Sender<Signal>,
msgs: Arc<Mutex<VecDeque<Update>>>,
debug_coordinates: Vec<Point>,
}
/// A utility struct that enables configuration of the `DummyHdm`
pub struct DummyHdmBuilder {
num_points: usize,
noise: f64,
range: f64,
delay: f64,
}
impl DummyHdmBuilder {
/// Instantiates a `DummyHdmBuilder` with default values
fn new() -> Self {
Self {
num_points: 1,
noise: f64::MIN_POSITIVE,
range: 1.0,
delay: 0.25,
}
}
/// Sets the number of sound sources around the listener.
pub fn num_points(mut self, num_points: usize) -> Self {
self.num_points = num_points;
self
}
/// Sets the "noise" in the simulated measurements of angles
pub fn noise(mut self, noise: f64) -> Self {
self.noise = noise;
self
}
/// Defines how far the ring of sound sources is from the listener.
pub fn range(mut self, range: f64) -> Self {
self.range = range;
self
}
/// Sets the delay between update calculations in the `DummyHdm`.
pub fn delay(mut self, delay: f64) -> Self {
self.delay = delay;
self
}
/// Consumes the builder, instantiating and starting a new `DummyHdm`.
pub fn build(self) -> DummyHdm {
DummyHdm::new_from_builder(self)
}
}
enum Signal {
Stop,
}
// HardwareDataManager inherits from DummyHdm
impl HardwareDataManager for DummyHdm {
/// Empty the update queue
fn clear(&mut self) {
self.msgs.lock().unwrap().clear();
}
}
// Notice that all we need to implement iterator is a way to get the next
// element, Rust takes care of the rest.
impl Iterator for DummyHdm {
type Item = Update;
fn next(&mut self) -> Option<Self::Item> {
// aquire the lock on the update queue, then remove and return the
// first element
self.msgs.lock().unwrap().pop_front()
}
}
// Of course, we can add more functionality beyond what is defined in the
// traits. Here are functions to instantiate from a DummyHdmBuilder, get a
// builder, stop the HDM, and get the debug locations.
impl DummyHdm {
/// Instante an instance with default settings.
pub fn new() -> Self {
let b = DummyHdmBuilder::new();
Self::new_from_builder(b) // invokes DummyHdm::new_from_builder
}
/// Instantiates and starts a dummy hardware data manager from a `DummyHdmBuilder`
///
/// Will continue to run and create new updates until `.stop()` is called.
fn new_from_builder(b: DummyHdmBuilder) -> Self {
// Create a communication channel so that we can tell this thing to stop
let (tx, rx) = mpsc::channel::<Signal>();
// `Arc<Mutex<T>>` allows thread-safe access to a data structure. `Arc`
// stands for an "atomic, reference-counted" pointer, meaning that the
// data will live as long as there is a reference to it, and references
// can be passed between threads. The `Mutex` ensures that only one
// thread has access to the data at a time
let msgs = Arc::new(Mutex::new(VecDeque::new()));
// This is the reference to the update queue that is going to be
// passed into the thread
let th_msgs = Arc::clone(&msgs);
// Generate the true coordinates of the objects once
let debug_coordinates = generate_circular_points(b.num_points, b.range);
// We need to make a clone because it is going to be moved in to the thread,
// and we need to have access for debug purposes out here in the struct
let th_debug_coords = debug_coordinates.clone();
// The closure passed in to `thread::spawn` is going to run in its own
// thread! `move` means that the closure is going to take ownership of
// every value that is captured (th_debug_coords, b.noise, and b.delay)
// rather than trying to borrow them.
let handle = thread::spawn(move || {
let mut running = true;
while running {
// if we receive a Signal::Stop, stop looping
if let Ok(received) = rx.try_recv() {
match received {
Signal::Stop => running = false,
}
}
// insert a fresh batch of updates into the update queue we need
// to take the lock on the queue so that no one can muck with it
// while we are appending to it
th_msgs
.lock()
.unwrap()
.append(&mut generate_flat_updates(&th_debug_coords, b.noise));
thread::sleep(Duration::from_secs_f64(b.delay));
}
});
DummyHdm {
handle: Some(handle),
tx,
msgs,
debug_coordinates,
}
}
/// Emits a Builder that allows a user to configure a custom HDM
/// Call `.build()` on the resulting object to instantiate an HDM.
pub fn builder() -> DummyHdmBuilder {
DummyHdmBuilder::new()
}
/// Tells the HDM to stop generating updates
pub fn stop(&mut self) {
self.tx.send(Signal::Stop).unwrap();
// We have to do this `Option` and `.take()` nonsense because calling
// `.join()` on a `JoinHandle` moves the `JoinHandle` out of the calling
// scope, which we couldn't do with this struct. The `.take()` brings
// the `JoinHandle` into the scope of this function, rather than in the
// struct itself, leaving `None` behind. Now we can call `.join()`.
if let Some(thread) = self.handle.take() {
thread.join().unwrap();
}
}
/// Returns the **true** locations of the objects in the dummy HDM.
pub fn get_debug_locations(&self) -> Vec<Point> {
self.debug_coordinates.clone()
}
}
impl Default for DummyHdm {
fn default() -> Self {
Self::new()
}
}
/// Generate points in a circle around the origin.
///
/// Creates `num_points` angle measurements in radians, distributed evenly
/// around a circle. Then, converts these angles into 2D Cartesian Points
/// around a circle with radius `range`.
fn generate_circular_points(num_points: usize, range: f64) -> Vec<Point> {
let mut others: Vec<_> = (0..num_points)
.map(|v| -> Radian { (v as f64 / num_points as f64) * 2.0 * PI })
.map(|angle: Radian| -> Point {
Point {
x: angle.cos() * range,
y: angle.sin() * range,
}
})
.collect();
others.insert(0, Point { x: 0.0, y: 0.0 });
others
}
/// Given a slice of [`Point`]s, generate [`Update`]s that describe the azimuth
/// between all possible pairs of Points (with some noise).
///
/// All updates are "flat" for this function, meaning that they have
/// zero elevation.
fn generate_flat_updates(points: &[Point], noise: f64) -> VecDeque<Update> {
let mut rng = thread_rng();
points
.iter()
.enumerate()
// flat_map first maps, then flattens the result. We need this because
// we are going to generate a vector of updates for each point, then
// flatten
.flat_map(|(i, &p1)| -> Vec<Update> {
points
.iter()
.enumerate()
.filter(|(j, _)| i != *j)
// for all Point pairs &(p1, &p2), where p1 != p2
.map(|(j, &p2)| -> Update {
let dx = p2.x - p1.x + rng.gen_range(-noise..noise);
let dy = p2.y - p1.y + rng.gen_range(-noise..noise);
let azimuth = dy.atan2(dx);
Update {
src: i,
dst: j,
elv: 0.0, // working in a flat 2D plane, for now
azm: azimuth,
}
})
.collect()
// now we have all of the updates from p1, so we do that for all
// possible p1s, and flatten the resulting update vectors
// into one big vector
})
.collect()
}
/// Take a slice of [`Update`]s and apply a bit of vertical noise so that they
/// are no longer pinned to the x/y plane.
#[allow(dead_code)]
fn unflatten_updates(updates: &[Update], noise: f64) -> VecDeque<Update> {
let mut rng = thread_rng();
updates
.iter()
.map(|u| -> Update {
// Here we are using the "struct update syntax" to create a new
// update with the same src, dst, and azm; but with a nonzero elv.
Update {
elv: rng.gen_range(-noise..noise),
..u.clone()
}
})
.collect()
}
// Unit tests in Rust are fantastic. Just look!
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn generate_some_points() {
let generated_points = generate_circular_points(4, 1.0);
let real_points = vec![
Point { x: 0.0, y: 0.0 },
Point { x: 1.0, y: 0.0 },
Point { x: 0.0, y: 1.0 },
Point { x: -1.0, y: 0.0 },
Point { x: 0.0, y: -1.0 },
];
generated_points
.iter()
.zip(real_points)
.for_each(|(gen, other)| {
assert!(other.abs_dist(gen) < 0.0001);
});
}
}