1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
//! A GUI that displays the localized points on top of the original data to
//! show how good/bad our localization algorithm is.
use crossterm::{
event::{self, DisableMouseCapture, EnableMouseCapture, Event, KeyCode},
execute,
terminal::{disable_raw_mode, enable_raw_mode, EnterAlternateScreen, LeaveAlternateScreen},
};
use cybergrape::localizer::Point;
use ratatui::{
backend::{Backend, CrosstermBackend},
style::{Color, Style},
symbols,
widgets::{Axis, Block, Chart, Dataset, GraphType},
Frame, Terminal,
};
use std::{
error::Error,
io,
time::{Duration, Instant},
};
// This is a function pointer in Rust! The important bit is on the right side. The
// FnMut says that it is a function, () means that it takes no arguments, and
// -> Vec<Point> means that it returns a vector of Points. The whole thing put
// together, FunMut() -> Vec<Point>, is **not** a type!! It is a trait. Every
// individual function in Rust is its own type, but it implements a trait that
// describes its arguments and return values. FunMut() -> Vec<Point> is one of
// those such traits.
//
// We wrap it in a Box<dyn T> to indicate that we want a value that implements
// the trait, because you can't have something that just implements a trait, it
// needs to be a full type. This is basically saying that we will take a Box that
// contains anything that implements the FunMut() -> Vec<Point> trait. It needs to
// be in a Box because the function itself could be of a variable size, so it must
// be allocated on the heap, hence the Box.
type PointGenerator = Box<dyn FnMut() -> Vec<Point>>;
/// This struct contains function pointers that generate original/debug points
/// and the new/calculated points that come out of the localization algorithm.
/// It also contains vectors that have the "unwrapped" versions of those points. We
/// need those because we draw the screen very frequently, and we don't necessarily
/// want to run the localization algorithm on every re-draw.
struct App {
orig_points_generator: PointGenerator,
new_points_generator: PointGenerator,
orig_points: Vec<(f64, f64)>,
new_points: Vec<(f64, f64)>,
}
impl App {
fn new(orig_points_generator: PointGenerator, new_points_generator: PointGenerator) -> App {
App {
orig_points_generator,
new_points_generator,
orig_points: vec![],
new_points: vec![],
}
}
// Call the functions that generate points, and store those points in the Vecs.
// This function is called every "tick", 4 times per second in this case.
fn on_tick(&mut self) {
self.orig_points = (self.orig_points_generator)()
.iter()
.map(|&Point { x, y }| (x, y))
.collect();
self.new_points = (self.new_points_generator)()
.iter()
.map(|&Point { x, y }| (x, y))
.collect();
}
}
pub fn engage_gui(
orig_points_generator: PointGenerator,
new_points_generator: PointGenerator,
) -> Result<(), Box<dyn Error>> {
// setup terminal
enable_raw_mode()?;
let mut stdout = io::stdout();
execute!(stdout, EnterAlternateScreen, EnableMouseCapture)?;
let backend = CrosstermBackend::new(stdout);
let mut terminal = Terminal::new(backend)?;
// create app and run it
let tick_rate = Duration::from_millis(250);
let app = App::new(orig_points_generator, new_points_generator);
let res = run_app(&mut terminal, app, tick_rate);
// restore terminal
disable_raw_mode()?;
execute!(
terminal.backend_mut(),
LeaveAlternateScreen,
DisableMouseCapture
)?;
terminal.show_cursor()?;
if let Err(err) = res {
println!("{:?}", err)
}
Ok(())
}
fn run_app<B: Backend>(
terminal: &mut Terminal<B>,
mut app: App,
tick_rate: Duration,
) -> io::Result<()> {
let mut last_tick = Instant::now();
loop {
// This loop iterates **super** fast. So we are redrawing the UI all the time.
terminal.draw(|f| ui(f, &mut app))?;
let timeout = tick_rate
.checked_sub(last_tick.elapsed())
.unwrap_or_else(|| Duration::from_secs(0));
// If the user hits 'q', quit.
if crossterm::event::poll(timeout)? {
if let Event::Key(key) = event::read()? {
if let KeyCode::Char('q') = key.code {
return Ok(());
}
}
}
// Every quarter second, call the on_tick function.
if last_tick.elapsed() >= tick_rate {
app.on_tick();
last_tick = Instant::now();
}
}
}
fn ui(f: &mut Frame, app: &mut App) {
// Padding added to the bounds of the chart
let padding = 2.0;
// Collect all the x and y values from orig_points and new_points
let all_x = app.orig_points.iter().map(|(x, _)| x);
let all_y = app.orig_points.iter().map(|(_, y)| y);
// Compute lower and upper bounds for the chart
let x_bounds = [
all_x.clone().fold(f64::INFINITY, |a, b| a.min(*b)) - padding,
all_x.clone().fold(f64::NEG_INFINITY, |a, b| a.max(*b)) + padding,
];
let y_bounds = [
all_y.clone().fold(f64::INFINITY, |a, b| a.min(*b)) - padding,
all_y.clone().fold(f64::NEG_INFINITY, |a, b| a.max(*b)) + padding,
];
let chart = Chart::new(vec![
Dataset::default()
.name("Original")
.marker(symbols::Marker::Dot)
.graph_type(GraphType::Scatter)
.style(Style::default().fg(Color::Cyan))
.data(&app.orig_points),
Dataset::default()
.name("Calculated")
.marker(symbols::Marker::Dot)
.graph_type(GraphType::Scatter)
.style(Style::default().fg(Color::Red))
.data(&app.new_points),
])
.block(Block::default().title("Chart"))
.x_axis(Axis::default().bounds(x_bounds))
.y_axis(Axis::default().bounds(y_bounds));
f.render_widget(chart, f.size());
}